四年级下册数学应用题
四年级下册数学应用题1教学内容:教材15页例4
素质教育目标:
1、使学生借助线段图能够理解简单应用题的数量关系,并会用两种方法解答这类应用题。
2、进一步培养学生的分析问题能力和灵活解题的能力。
3、渗透数形结合和事物相互联系的辩证唯物主义观点。
教学重点:掌握三步应用题的解题方法。
教学难点:分析并理解三步应用题的解题思路。
教学过程:
1、根据条件补充问题,使之成为一道三步计算的应用题。
(1)、请说说解题的思路和相应的算式。
(2)、这道题还可以怎样解答?
2、教学例4:
出示例题
(1)指名读题,找出题中的已知条件和所求问题。
(2)借助线段图分析数量关系。
想一想:根据题里的条件,前面的线段图该怎样修改?所求问题在线段图上怎样表示?
讨论题:
(3)比较两种方法哪种比较简便。
3、引导概括
解答应用题不但方法可以不一样,而且计算的步骤也不相同。有的三步题可以用两步来解答。这样使计算变得比较简便。所以解题时应该注意选择合理、简便的方法进行解答。
4、综合与应用:(课件)
5、板书
教学内容:教科书例5及第19页“做一做”,练习五第1、2题。
一、素质教育目标
(一)、知识教学点
1.理解三步计算的应用题的数量关系:掌握解题思路。
2.能分步解答较容易的三步计算应用题。
(二)能力训练点
1.培养学生类推能力、分析比较能力。
2.培养学生理解应用题数量关系的能力。
(三)德育渗透点
渗透事物间相互联系的。
(四)美育渗透点
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
二、学法引导
指导学生运用已有经验,合作学习、讨论、试算,感知算理和计算方法。
三、重点、难点
教学重点:理解应用题的数量关系。
教学难点:确定应用题的解题步骤。
四、教具准备
小黑板、投影片等。
五、教学步骤
(一)、铺垫孕伏
1.练习:(出示口算卡片)
56×2+5678×4—78
168—17×4100—100÷5×3
2.复习题:
读题,分析解题思路。
提示:要想求出“三、四年级一共栽树多少棵”,必须知道哪两个条件?四年级栽树棵数怎样求?为什么用“56×2”,你们是根据哪句话这样求的?
学生独立解答、订正。
(二)探索新知
1.利用投影片改复习题为例5。(课件演示)
(抓住复习和例5的联系点,设计了复习题,为学习例5做好铺垫,有利于学生思维的发展。)
2.读题,找出已知条件和所求问题。
讨论:你认为这道题的关键句是哪一句?
(教师在“五年级栽的比四年级总数少10棵”下面画出曲线。)
3,怎样用线段图表示题中的数量关系呢?
引导学生画线段图。
4.根据线段图和题意,讨论思考:
要想求出五年级栽树多少棵?必须
先知道什么?你是根据什么这样说的?为什么?
启发学生:“三、四年级一共栽树多少棵”能直接求出来吗?解答这道题,第一步求什么?第二步求什么?第三步求什么?
(通过线段图,从直观到抽象,帮助学生理解算理。)
5,通过交流汇报,确定解题思路,教师板书小标题,再让学生直接在书中填空,指定一名学生板演。
形成板书:
四年级栽树多少棵?
56×2=112(棵)
三、四年级一共栽树多少棵?
56+112=168(棵)
五年级栽树多少棵?
168—10=158(棵)
答:五年级栽树158棵。
6.:
引导学生回顾例5的解题过程,解答这类题时应注意什么?
抓住关键句理解数量关系,依据关键句确定数量关系,确定先算什么,再算什么,最后算什么,并分步解答。
引导学生观察:在解题过程中,56这个已知条件用到了几次?分别是在求什么时候用的?通过讨论,使学生明确:解答应用题时,有的已知条件不止用一次,具体怎样用,要根据题目内容确定。
7.反馈练习:教材第19页“做一做”第1题。
同桌讨论,关键句是哪一句,再根据题意确定先求什么,再求什么,最后求确定2—3名学生汇报讨论结果。然后再让学生分步独立解答,集体订正。
(三)、巩固发展1、“做一做”第2、3题。
同桌每人选一题,互相说一下这道题的关键句是什么,应该先求什么,再求什么,最后求什么。然后独立完成。
2、练习五第1题
先画图表示数量关系。
(四)、课堂
回顾本课学习内容,指出这类应用题是三步计算应用题,还是两步
计算的应用题
板书课题:
进一步明确:解答此类应用题,要抓住关键语句,明确数量关系,通过分析关键语句确定的数量关系,明确解题步骤。
提示同学:有的已知条件在解题时不止用一次。
六、布置作业
练习五第2题
七、板书设计
四年级下册数学应用题21、某车间要生产电视机1560台,已经生产了8天,每天生产120台,剩下的每天生产150台,还要几天才能完成任务?
2、一个服装车间原来做一套服装用布48分米,改用新法裁剪,每套可节约用布3分米,原来计划做3000套服装的布,现在可以多做几套?
3、一个养鸡场一月份运出肉鸡13600只,二月份运出的肉鸡是一月份的2倍,三月份运出的比前两个月的总数少800只,三月份运出了多少只?
4、计划生产一批零件,王师傅每天生产90个,12天才能完成。结果每天比原计划多生产18个,可以提前几天完成?
5、4筐西红柿共重80千克,5筐青菜共重125千克。平均每筐青菜比西红柿重多少千克?
6、食堂运来1200千克煤,烧了16天,还剩480千克。平均每天烧多少千克?
7、新村小学430名同学,分乘5辆汽车去农村参观。前4辆车各坐84人,第5辆车要坐多少人,才能保证全部坐上车?
8、学校图书室买来故事书和科技书共1020本,其 ……此处隐藏8405个字……二步算四年级有多少人?38×3=114(人);第三步再把这两个年级人数合并起来,160+114=274(人)。就是要求的问题,即三、四年级的总人数。
教师板书:
①三年级有多少人? 40×4=160(人)
②四年级有多少人? 38×3=114(人)
③三年级和四年级一共有多少人? 160+114=274(人)
答:三年级和四年级一共有274人。
刚才的思考方法是从问题入手,找出所需要的条件,然后确定先算什么,再算什么,最后算什么。
大家想一想,如果从题目的条件入手分析,那么题目中哪两个条件有密切关系?可以得到什么新的数量?
(三年级有4个班,每班40人,可以求出三年级有40×4=160(人);四年级有3个班,每班38人,可以求出四年级有38×3=114(人);最后把两个年级人数合起来,160+114=274(人)就是题中要求的问题。)
3.反馈练习。
如果例3的已知条件不变,把问题改成三年级比四年级多多少人,应该怎样解答?
全班同学做在练习本上。
订正时说明是怎样想的。
小结:
我们解答应用题时,在认真审题理解题意的基础上,最重要的是分析数量关系,掌握分析方法,既要根据条件想问题,得到新的已知数量,也可以根据问题找条件,哪个条件是已知的,哪个条件是未知的,因此要先把未知的条件求出来。这两种分析方法是要经常用到的所以要切实掌握。
三、巩固反馈。
1.独立解答。
体育老师买了3个排球,每个40元,还买了2个篮球,每个62元,小学数学教案《三步计算应用题(一)》。一共用了多少元?(先用线段图表示出已知条件和问题,再列式解答)
解答后,学生说说解题思路,并订正。
2.比较题。
(1)菜场运来黄瓜8筐,每筐25千克,茄子12筐,每筐20千克,运来的黄瓜和茄子共有多少千克?
(2)如果改变其中一个条件,茄子12筐,改为8筐,其余条件和问题不变,应该怎样解答?
学生会出现的两种解法:
25×8+20×8 (25+20)×8
=200+160 =45×8
=360(千克) =360(千克)
请同学们比较一下这两种解法的解题思路是什么?哪种解法比较简便?
通过讨论明确,有些应用题,由于解题思路不同,解题方法就不同,而且计算的步数也不一样。有的三步计算题可以用两步计算,这样使得计算比较简便。
同学们想一想,(1)题能否用两步计算?为什么?(从而明确由于两种蔬菜的筐数不一样,也就是当求两个积的和(或差)时,没有相同的因数,就不能用简便方法计算。)
3.粮店运来25包大米,共重2500千克,运来40袋面粉,共重20xx千克,一包大米比一袋面粉重多少千克?
四、全课总结:
我们今天学习的复合应用题,都是由几个简单的一步应用题组合而成的。解答是首先要理解题电,在此基础上分析数量关系是关键,无论采用哪种分析方法,都要找出条件与问题之间的关系,计算时要养成认真,细心的习惯。
五、作业。
练习四第1~3题。
附板书设计:
三步应用题(一)
例3 新镇小学三年级有4个班,每班40 菜场运来黄瓜8筐,每筐25千克
人,四年级有3个班,每班38人。三年 茄子8筐,每筐20千克,运来的
级和四年级一共有多少人? 黄瓜和茄子共多少千克?
每班40人 解法一:(1)运来黄瓜多少千克?
三年级: 25×8=200(千克)
每班38人共?人 (2)运来茄子多少千克?
四年级: 20×8=160(千克)
(1)三年级有多少人? (3)共运来黄瓜、茄子多少千克?
40×4=160(人) 200+160=360(千克)
(2)四年级有多少人? 解法二:(1)每筐黄瓜和茄子共重多少千克?
38×3=114(人) 25+20=45(千克)
(3)三、四年级共有多少人? (2)运来黄瓜和茄子共重多少千克?
160+114=274(人) 45×8=360(千克)
答:三、四年级共有274人。 答:运来黄瓜和茄子共重360千克。
四年级下册数学应用题111. 从北京到全国各地的公路干线中,最长的是京拉线(北京到拉萨),最短的是京塘线(北京到塘沽)。京塘线的长度是142千米,京拉线的长度大约是京塘线的27倍。京拉线大约长几千几百千米?
_____________________________________
2. 花园小学新买来45套单人课桌椅,每张课桌128元,每把椅子52元。一共用了多少元?(用两种方法解答)
_____________________________________
3.林庄有一个长方形花圃,长120米,宽50米;还有一个正方形苗圃,边长80米。花圃与苗圃比,哪一个面积大?大多少平方米?
_____________________________________
4. 一个等腰三角形的顶角是70度,沿底边上的高把它对折后,得到两个直角三角形,每个直角三角形中的两个锐角各是多少度?
_____________________________________
5. 学校举行运动会。三年级有54人参赛,四年级参赛的比三年级多7人,五年级的参赛人数是三、四年级参赛总人数的2倍。五年级有多少人参赛?
_____________________________________
6.3辆卡车共运480箱苹果。照这样计算,再增加2辆卡车,一共可以运多少箱?
_____________________________________
7. 同学们载树,四年级栽了32棵,六年级栽的棵数比四年级的3倍少18棵。四年级比六年级少栽多少棵?
_____________________________________
8.一间教室用边长3分米的方砖,480块正好铺满。如果改用边长4分米的方砖,需要多少块?
_____________________________________
9.一辆卡车的载重量是5吨,车上已经装了每袋75千克的大米40袋,还能装每袋25千克的面粉多少袋?(列综合算式解答)
_____________________________________
10.小军从家到学校走了8分。用同样的速度,他从家到少年宫要走多少时间?(用两种方法解答)
_____________________________________